揭开这个神秘的面纱,探索其中的数学奥秘
BP神经网络概念
首先从名称中可以看出,BP神经网络可以分为两个部分,BP和神经网络。BP是Back Propagation
的简写 ,意思是反向传播。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法也称为梯度下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。
其主要的特点是:信号是正向传播的,而误差是反向传播的。
举一个例子,某厂商生产一种产品,投放到市场之后得到了消费者的反馈,根据消费者的反馈,厂商对产品进一步升级,优化,一直循环往复,直到实现最终目的——生产出让消费者更满意的产品。产品投放就是“信号前向传播”,消费者的反馈就是“误差反向传播”。这就是BP神经网络的核心。
- 一般在提到有多少层时,不包括输出层,只计算隐藏层和输出层在一起的数量
- 一般来说,越深的网络越能学到更深的特征
- 逻辑回归(Logistic)其实是神经网络的一个特例,即不包含隐藏层的神经网络
训练一个BP神经网络的核心步骤
这张图基本反应了训练一个BP神经网络的核心步骤,很容易懂,不过多解释了。下面,我们以一个最简单的BP神经网络为例,来推导其计算过程。见下图:
前向传播
隐含层输入节点:
$$ \begin{aligned} h_{1}=W_{11}\cdot x_{1}+W_{21}\cdot x_{2}+b_{h1}\\ h_{2}=W_{12}\cdot x_{2}+W_{22}\cdot x_{2}+b_{h2}\\ h_{3}=W_{13}\cdot x_{3}+W_{23}\cdot x_{2}+b_{h3} \end{aligned} $$
隐含层输出节点:
经过激活函数$f\left( x\right) =\dfrac{1}{1+e^{-x}}$运算得到:
$$ \begin{aligned} h_{o1}=f\left( h_{1}\right) \\ h_{o2}=f\left( h_{2}\right) \\ h_{o3}=f\left( h_{3}\right) \\ \end{aligned} $$
这里提一点激活函数的导数,后面会用到:
$$ f^{'}(x)=\frac{0-(-e^{-x})}{(1+e^{-x})^{2}}=\frac{1}{1+e^{-x}}\times (1-\frac{1}{1+e^{-x}})=f(x)(1-f(x)) $$
输出层输入节点:
$$ \begin{aligned} y_{1}=W_{ho1}\cdot h_{o1}+W_{ho2}\cdot h_{o2}+W_{ho3}\cdot h_{o3}+b_{o} \end{aligned} $$
输出层输出节点:
$$ y_{o}=f\left( y_{1}\right) $$
反向传播
需要明白微积分中的链式法则,设$x$是实数,$f$和$g$是从实数映射到实数的函数。假设$y=g(x)$并且$z=f(g(x))=f(y)$。那么链式法则就是:
$$ \frac{dz}{dx}=\frac{dz}{dy}\frac{dy}{dx} $$
在算法中,会计算实际输出$y_{o}$和期望输出$d_{o}$的误差,如果这个误差大于设定的阈值,那么就会进行误差的反向传播。
定义损失函数:
$$ f_{error}=\dfrac{1}{2}\sum \left( d_{o}-y_{o}\right) ^{2} $$
损失函数中的$1/2$是为了后面求导计算方便而添加的。
🎯目标:更新$W$、$b$使$f_{error}$更小
输出层→隐藏层的更新
先看输出层,假设更新后的$b_{o}$为$b_{o}^{'}$,即$b_{o}^{'} = b_{o}+\Delta b_{o}$,只要求出$\Delta b_{o}$,就能得到$b_{o}^{'}$。
根据梯度下降的原则,可以知道:
$$ \Delta b_{o}=\eta \cdot \dfrac{\partial f_{error}}{\partial b_{o}} $$
根据上面的推导,可以知道:
$$ f_{error}=\dfrac{1}{2} \left( d_{o}-y_{o}\right) ^{2}=\dfrac{1}{2} (d_{o}-f(W_{ho1}\cdot h_{o1}+W_{ho2}\cdot h_{o2}+W_{ho3}\cdot h_{o3}+b_{o}))^2 $$
根据链式法则:
$$ \dfrac{\partial f_{error}}{\partial b_{o}}=\dfrac{\partial f_{error}}{\partial y_{o}}\cdot \dfrac{\partial y_{o}}{\partial b_{o}}=\dfrac{\partial f_{error}}{\partial y_{o}}\cdot \dfrac{\partial y_{o}}{\partial y_{1}}\cdot \dfrac{\partial y_{1}}{\partial b_{o}} $$
下面单独求解各个偏导:
$$ \dfrac{\partial f_{error}}{\partial y_{o}}=\dfrac{\partial (\dfrac{1}{2} \left( d_{o}-y_{o}\right) ^{2})}{\partial y_{o}}=-(d_{o}-y_{o}) $$
$$ \dfrac{\partial y_{o}}{\partial y_{1}}=\dfrac{\partial (\dfrac{1}{1+e^{-y_{1}}})}{\partial y_{1}}=y_{o}(1-y_{o}) $$
$$ \dfrac{\partial y_{1}}{\partial b_{o}}=\dfrac{\partial (W_{ho1}\cdot h_{o1}+W_{ho2}\cdot h_{o2}+W_{ho3}\cdot h_{o3}+b_{o})}{\partial b_{o}}=1 $$
所以:
$$ \dfrac{\partial f_{error}}{\partial b_{o}}=-(d_{o}-y_{o})\cdot y_{o}\cdot (1-y_{o}) $$
所以:
$$ \Delta b_{o}=\eta \cdot \dfrac{\partial f_{error}}{\partial b_{o}}=-\eta(d_{o}-y_{o})\cdot y_{o}\cdot (1-y_{o}) $$
对于$W$,这里以$W_{ho1}$为例子,其他同理可得。
由链式法则:
$$ \dfrac{\partial f_{error}}{\partial W_{ho1}}=\dfrac{\partial f_{error}}{\partial y_{o}}\cdot \dfrac{\partial y_{o}}{\partial W_{ho1}}=\dfrac{\partial f_{error}}{\partial y_{o}}\cdot \dfrac{\partial y_{o}}{\partial y_{1}}\cdot \dfrac{\partial y_{1}}{\partial W_{ho1}} $$
式中的$\dfrac{\partial f_{error}}{\partial y_{o}}$和$\dfrac{\partial y_{o}}{\partial y_{1}}$已经计算过,无需再次计算。
$$ \dfrac{\partial y_{1}}{\partial W_{ho1}} = \dfrac{\partial (W_{ho1}\cdot h_{o1}+W_{ho2}\cdot h_{o2}+W_{ho3}\cdot h_{o3}+b_{o})}{\partial W_{ho1}}=h_{o1} $$
所以:
$$ \Delta W_{ho1}=\eta \cdot \dfrac{\partial f_{error}}{\partial W_{ho1}}=-\eta(d_{o}-y_{o})\cdot y_{o}\cdot (1-y_{o})\cdot h_{o1} $$
这样就把输出层的$W$、$b$更新完成了,更新后的结果:
$$ b_{o}^{'} = b_{o}+\Delta b_{o}=b_{o}-\eta(d_{o}-y_{o})\cdot y_{o}\cdot (1-y_{o}) $$
$$ \begin{aligned} W_{oh1}^{'} = W_{oh1}+\Delta W_{oh1}=W_{oh1}-\eta(d_{o}-y_{o})\cdot y_{o}\cdot (1-y_{o})\cdot h_{o1}\\ W_{oh2}^{'} = W_{oh1}+\Delta W_{oh2}=W_{oh2}-\eta(d_{o}-y_{o})\cdot y_{o}\cdot (1-y_{o})\cdot h_{o2}\\ W_{oh3}^{'} = W_{oh1}+\Delta W_{oh3}=W_{oh3}-\eta(d_{o}-y_{o})\cdot y_{o}\cdot (1-y_{o})\cdot h_{o3}\\ \end{aligned} $$
隐藏层→输入层的更新
这里以$b_{h1}$为例子。
此时:
$$ \begin{aligned} f_{\text{error}} &= \frac{1}{2} \left( d_{o} - y_{o} \right)^{2} \\ &= \frac{1}{2} \left( d_{o} - f \left( W_{ho1} \cdot f \left( x_{1} \cdot W_{11} + x_{2} \cdot W_{21} + b_{h1} \right) + W_{ho2} \cdot f \left( x_{1} \cdot W_{12} + x_{2} \cdot W_{22} + b_{h2} \right) \right. \right. \\ &\quad \left. \left. + W_{ho3} \cdot f \left( x_{1} \cdot W_{13} + x_{2} \cdot W_{23} + b_{h3} \right) + b_{o} \right) \right)^{2} \end{aligned} $$
由链式法则:
$$ \dfrac{\partial f_{error}}{\partial b_{h1}}=\dfrac{\partial f_{error}}{\partial y_{o}}\cdot \dfrac{\partial y_{o}}{\partial b_{h1}}=\dfrac{\partial f_{error}}{\partial y_{o}}\cdot \dfrac{\partial y_{o}}{\partial y_{1}}\cdot \dfrac{\partial y_{1}}{\partial h_{o1}}\cdot \dfrac{\partial h_{o1}}{\partial b_{h1}} $$
式中的$\dfrac{\partial f_{error}}{\partial y_{o}}$和$\dfrac{\partial y_{o}}{\partial y_{1}}$已经计算过,无需再次计算。
$$ \dfrac{\partial y_{1}}{\partial h_{o1}}=\dfrac{\partial (W_{ho1}\cdot h_{o1}+W_{ho2}\cdot h_{o2}+W_{ho3}\cdot h_{o3}+b_{o})}{\partial h_{o1}}=W_{ho1} $$
$$ \dfrac{\partial h_{o1}}{\partial b_{h1}}=\dfrac{\partial(f(W_{11}\cdot x_{1}+W_{21}\cdot x_{2}+b_{h1}))}{\partial b_{h1}}=h_{o1}(1-h_{o1}) $$
所以:
$$ \Delta b_{h1}=\eta \cdot \dfrac{\partial f_{error}}{\partial b_{h1}}=-\eta(d_{o}-y_{o})\cdot y_{o}\cdot (1-y_{o})\cdot W_{ho1} \cdot h_{o1}(1-h_{o1}) $$
同理,可以得到:
$$ \Delta b_{h2}=\eta \cdot \dfrac{\partial f_{error}}{\partial b_{h2}}=-\eta(d_{o}-y_{o})\cdot y_{o}\cdot (1-y_{o})\cdot W_{ho2} \cdot h_{o2}(1-h_{o2}) $$
$$ \Delta b_{h3}=\eta \cdot \dfrac{\partial f_{error}}{\partial b_{h3}}=-\eta(d_{o}-y_{o})\cdot y_{o}\cdot (1-y_{o})\cdot W_{ho3} \cdot h_{o2}(1-h_{o3}) $$
对于$W$,这里以$W_{11}$为例子,其他同理可得。
由链式法则:
$$ \dfrac{\partial f_{error}}{\partial W_{11}}=\dfrac{\partial f_{error}}{\partial y_{o}}\cdot \dfrac{\partial y_{o}}{\partial W_{ho1}}=\dfrac{\partial f_{error}}{\partial y_{o}}\cdot \dfrac{\partial y_{o}}{\partial h_{o1}}\cdot \dfrac{\partial h_{o1}}{\partial W_{11}}=\dfrac{\partial f_{error}}{\partial y_{o}}\cdot \dfrac{\partial y_{o}}{\partial y_{1}}\cdot\dfrac{\partial y_{1}}{\partial h_{o1}}\cdot \dfrac{\partial h_{o1}}{\partial W_{11}} $$
式中的$\dfrac{\partial f_{error}}{\partial y_{o}}$、$\dfrac{\partial y_{o}}{\partial y_{1}}$和$\dfrac{\partial y_{1}}{\partial h_{o1}}$已经计算过,无需再次计算。
$$ \dfrac{\partial h_{o1}}{\partial W_{11}}=\dfrac{\partial h_{o1}}{\partial h_{1}}\cdot \dfrac{\partial h_{1}}{\partial W_{11}}=h_{1}(1-h_{1})\cdot x_{1} $$
所以:
$$ \Delta W_{11}=\eta \cdot \dfrac{\partial f_{error}}{\partial W_{11}}=-\eta(d_{o}-y_{o})\cdot y_{o}\cdot (1-y_{o})\cdot W_{ho1} \cdot h_{1}(1-h_{1})\cdot x_{1} $$
同理,可以得到:
$$ \Delta W_{12}=\eta \cdot \dfrac{\partial f_{error}}{\partial W_{12}}=-\eta(d_{o}-y_{o})\cdot y_{o}\cdot (1-y_{o})\cdot W_{ho2} \cdot h_{2}(1-h_{2})\cdot x_{1} $$
$$ \Delta W_{13}=\eta \cdot \dfrac{\partial f_{error}}{\partial W_{13}}=-\eta(d_{o}-y_{o})\cdot y_{o}\cdot (1-y_{o})\cdot W_{ho3} \cdot h_{3}(1-h_{3})\cdot x_{1} $$
$$ \Delta W_{21}=\eta \cdot \dfrac{\partial f_{error}}{\partial W_{21}}=-\eta(d_{o}-y_{o})\cdot y_{o}\cdot (1-y_{o})\cdot W_{ho1} \cdot h_{1}(1-h_{1})\cdot x_{2} $$
$$ \Delta W_{22}=\eta \cdot \dfrac{\partial f_{error}}{\partial W_{22}}=-\eta(d_{o}-y_{o})\cdot y_{o}\cdot (1-y_{o})\cdot W_{ho2} \cdot h_{2}(1-h_{2})\cdot x_{2} $$
$$ \Delta W_{23}=\eta \cdot \dfrac{\partial f_{error}}{\partial W_{23}}=-\eta(d_{o}-y_{o})\cdot y_{o}\cdot (1-y_{o})\cdot W_{ho3} \cdot h_{3}(1-h_{3})\cdot x_{2} $$
这样就把输入层的$W$、$b$更新完成了。
下一篇开始手撕代码!
不错不错,我喜欢看